Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trials ; 25(1): 245, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594710

RESUMO

BACKGROUND: Osteoarthritis (OA) has long been considered as a degenerative disease of cartilage tissue resulting from bodily wear and tear. However, there is accumulating evidence that inflammation plays a key role in the pathogenesis of OA. In knee OA, the most common form of OA, exercise therapy as an effective component of early treatment addresses functional deficits, pain and inflammation. Since inflammation is critical for the development and progress of OA, anti-inflammatory therapies must be combined strategically. In the course of the NUMOQUA project, an anti-inflammatory therapeutic diet named 'Austrian Osteoarthritis Cuisine' was developed. It is based on the framework of the New Nordic Diet combined with the food-based dietary guidelines of Austria, the guidelines for OA, the Austrian food culture and the principles of a sustainable diet. The present study examines the implementation of the 'Austrian OA Cuisine' combined with the evidence-based training programme GLA:D® (Good Life with osteoArthritis in Denmark) in Austrian patients with knee OA and the effects on quality of life, nutritional and inflammatory status, as well as oxidative stress parameters. METHODS: A total of 60 participants aged 50 to 75 with knee OA will be included and randomly assigned either to the intervention group or the control group. All participants will undergo the GLA:D® programme in the first 6 weeks. Additionally, the intervention group will receive nutritional group training and individual nutritional counselling on the 'Austrian OA Cuisine' over 9 months. The control group will receive general information about a healthy lifestyle. Measurements at baseline and at 4 follow-up dates include nutritional, inflammatory and oxidative stress markers. Furthermore, anthropometric, behavioural and clinical data will be obtained. The recruitment process lasted from autumn 2022 to January 2024, followed by the intervention until October 2024. DISCUSSION: The prevalence of OA is expected to increase in the future due to ongoing demographic changes and rising obesity rates. The expected results will provide important evidence on whether this interdisciplinary therapeutic approach could be a new, cost-effective and sustainable strategy to address the disease process of OA without negative side effects. TRIAL REGISTRATION: ClinicalTrials.gov NCT05955300. Date of registration: 23rd of October 2023.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/epidemiologia , Qualidade de Vida , Resultado do Tratamento , Terapia por Exercício/métodos , Inflamação , Anti-Inflamatórios , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Food Funct ; 15(8): 4065-4078, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38546454

RESUMO

The decline in vascular function and increase in blood pressure with aging contribute to an increased cardiovascular disease risk. In this randomized placebo-controlled crossover study, we evaluated whether previously reported cardiovascular benefits of plant-derived inorganic nitrate via nitric oxide (NO) translate into improved vascular function and blood pressure-lowering in 15 men and women (age range: 56-71 years) with treated hypertension. We investigated the effects of a single ∼400 mg-dose at 3 hours post-ingestion (3H POST) and the daily consumption of 2 × âˆ¼400 mg of nitrate through nitrate-rich compared with nitrate-depleted (placebo) beetroot juice over 4 weeks (4WK POST). Measurements included nitrate and nitrite in plasma and saliva; endothelial-dependent and -independent forearm blood flow (FBF) responses to acetylcholine (FBFACh) and glyceryltrinitrate (FBFGTN); and clinic-, home- and 24-hour ambulatory blood pressure. Compared to placebo, plasma and salivary nitrate and nitrite increased at 3H and 4WK POST following nitrate treatment (P < 0.01), suggesting a functioning nitrate-nitrite-NO pathway in the participants of this study. There were no differences between treatments in FBFACh and FBFGTN-area under the curve (AUC) ratios [AUC ratios after (3H POST, 4WK POST) compared with before (PRE) the intervention], or 24-hour ambulatory blood pressure or home blood pressure measures (P > 0.05). These findings do not support the hypothesis that an increased intake of dietary nitrate exerts sustained beneficial effects on FBF or blood pressure in hypertensive older adults, providing important information on the efficacy of nitrate-based interventions for healthy vascular aging. This study was registered under ClinicialTrials.gov (NCT04584372).


Assuntos
Beta vulgaris , Pressão Sanguínea , Estudos Cross-Over , Sucos de Frutas e Vegetais , Hipertensão , Nitratos , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Nitratos/metabolismo , Beta vulgaris/química , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/dietoterapia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Sucos de Frutas e Vegetais/análise , Nitritos/análise , Saliva/química , Saliva/metabolismo
3.
Food Funct ; 13(23): 12353-12362, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36367386

RESUMO

Dietary nitrate, found predominantly in green leafy vegetables and other vegetables such as radish, celery, and beetroot, has been shown to beneficially modulate inflammatory processes and immune cell function in animals and healthy individuals. The impact of increased nitrate intake on soluble inflammatory mediators in individuals with hypertension is unclear. We assessed whether the daily consumption of dietary nitrate via beetroot juice for 1-week lowered levels of circulating inflammatory markers in men and women with treated hypertension. Twenty-seven male and female participants were recruited to a randomized, placebo-controlled, double-blind crossover trial. The effects of 1-week intake of nitrate-rich beetroot juice versus 1-week intake of nitrate-depleted beetroot juice (placebo) were investigated. Plasma concentrations of circulating soluble adhesion molecules (ICAM-1, VCAM-1, CD62E, CD62P), inflammatory cytokines (IL-1ß, IL-6, IL-10, IL-12p70, TNF-α) and chemokines (IL-8, MCP-1) were measured by multiplex flow cytometric bead array in samples collected on day 7 of each intervention period. Other outcomes included alterations in nitrate metabolism assessed by measuring nitrate and nitrite concentrations in plasma, saliva, and urine. One week of beetroot juice did not alter levels of the soluble adhesion markers or cytokines assessed. A 7-fold increase in salivary nitrite, an 8-fold increase in salivary nitrate, a 3-fold increase in plasma nitrate and nitrite, and a 4-fold increase in urinary nitrate and nitrite compared to the placebo was observed (p < 0.001 for all comparisons). Increasing dietary nitrate consumption over 7 days is not effective in reducing soluble inflammatory mediators in individuals with treated hypertension. This trial was registered at anzctr.org.au as ACTRN 12613000116729.


Assuntos
Beta vulgaris , Hipertensão , Animais , Nitratos , Nitritos , Citocinas/farmacologia , Sucos de Frutas e Vegetais , Hipertensão/tratamento farmacológico , Antioxidantes/farmacologia , Método Duplo-Cego , Verduras , Estudos Cross-Over , Biomarcadores , Mediadores da Inflamação/farmacologia , Pressão Sanguínea , Suplementos Nutricionais
4.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684481

RESUMO

A high protein intake at old age is important for muscle protein synthesis, however, this could also trigger protein oxidation with the potential risk for DNA damage. The aim of this study was to investigate whether an increased protein intake at recommended level or well above would affect DNA damage or change levels of reduced (GSH) and oxidised glutathione (GSSG) in community-dwelling elderly subjects. These analyses were performed in two randomized intervention studies, in Austria and in New Zealand. In both randomized control trials, the mean protein intake was increased with whole foods, in the New Zealand study (n = 29 males, 74.2 ± 3.6 years) to 1.7 g/kg body weight/d (10 weeks intervention; p < 0.001)) in the Austrian study (n = 119 males and females, 72.9 ± 4.8 years) to 1.54 g/kg body weight/d (6 weeks intervention; p < 0.001)). In both studies, single and double strand breaks and as formamidopyrimidine-DNA glycosylase-sensitive sites were investigated in peripheral blood mononuclear cells or whole blood. Further, resistance to H2O2 induced DNA damage, GSH, GSSG and CRP were measured. Increased dietary protein intake did not impact on DNA damage markers and GSH/GSSG levels. A seasonal-based time effect (p < 0.05), which led to a decrease in DNA damage and GSH was observed in the Austrian study. Therefore, increasing the protein intake to more than 20% of the total energy intake in community-dwelling seniors in Austria and New Zealand did not increase measures of DNA damage, change glutathione status or elevate plasma CRP.


Assuntos
Dano ao DNA , Proteínas na Dieta/farmacologia , Redes e Vias Metabólicas , Idoso , Idoso de 80 Anos ou mais , Áustria , Biomarcadores/sangue , Ingestão de Energia , Feminino , Humanos , Lipídeos/sangue , Masculino , Nova Zelândia , Nutrientes/análise
5.
Exerc Immunol Rev ; 26: 80-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32139350

RESUMO

An increasing body of evidence suggests that age-related immune changes and chronic inflammation contribute to cancer development. Recognizing that exercise has protective effects against cancer, promotes immune function, and beneficially modulates inflammation with ageing, this review outlines the current evidence indicating an emerging role for exercise immunology in preventing and treating cancer in older adults. A specific focus is on data suggesting that muscle- derived cytokines (myokines) mediate anti-cancer effects through promoting immunosurveillance against tumourigenesis or inhibiting cancer cell viability. Previous studies suggested that the exercise-induced release of myokines and other endocrine factors into the blood increases the capacity of blood serum to inhibit cancer cell growth in vitro. However, little is known about whether this effect is influenced by ageing. Prostate cancer is the second most common cancer in men. We therefore examined the effects of serum collected before and after exercise from healthy young and older men on the metabolic activity of androgen-responsive LNCaP and androgen-unresponsive PC3 prostate cancer cells. Exercise-conditioned serum collected from the young group did not alter cell metabolic activity, whereas post-exercise serum (compared with pre-exercise serum) from the older men inhibited the metabolic activity of LNCaP cancer cells. Serum levels of candidate cancer-inhibitory myokines oncostatin M and osteonectin increased in both age groups following exercise. Serum testosterone increased only in the younger men postexercise, potentially attenuating inhibitory effects of myokines on the LNCaP cell viability. The data from our study and the evidence in this review suggest that mobilizing serum factors and immune cells may be a key mechanism of how exercise counteracts cancer in the older population.


Assuntos
Envelhecimento , Exercício Físico , Sistema Imunitário , Oncostatina M/sangue , Osteonectina/sangue , Neoplasias da Próstata/prevenção & controle , Idoso , Linhagem Celular Tumoral , Humanos , Masculino
6.
Nutr Rev ; 77(8): 584-599, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150091

RESUMO

Inorganic dietary nitrate, found abundantly in green leafy and some root vegetables, elicits several beneficial physiological effects, including a reduction in blood pressure and improvements in blood flow through nitrate-nitrite-nitric oxide signaling. Recent animal and human studies have shown that dietary nitrate and nitrite also modulate inflammatory processes and immune cell function and phenotypes. Chronic low-grade inflammation and immune dysfunction play a critical role in cardiovascular disease. This review outlines the current evidence on the efficacy of nitrate-rich plant foods and other sources of dietary nitrate and nitrite to counteract inflammation and promote homeostasis of the immune and vascular systems. The data from these studies suggest that immune cells and immune-vasculature interactions are important targets for dietary interventions aimed at improving, preserving, or restoring cardiovascular health.

7.
Nutrients ; 10(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037048

RESUMO

There is an ongoing debate as to the optimal protein intake in older adults. An increasing body of experimental studies on skeletal muscle protein metabolism as well as epidemiological data suggest that protein requirements with ageing might be greater than many current dietary recommendations. Importantly, none of the intervention studies in this context specifically investigated very old individuals. Data on the fastest growing age group of the oldest old (aged 85 years and older) is very limited. In this review, we examine the current evidence on protein intake for preserving muscle mass, strength and function in older individuals, with emphasis on data in the very old. Available observational data suggest beneficial effects of a higher protein intake with physical function in the oldest old. Whilst, studies estimating protein requirements in old and very old individuals based on whole-body measurements, show no differences between these sub-populations of elderly. However, small sample sizes preclude drawing firm conclusions. Experimental studies that compared muscle protein synthetic (MPS) responses to protein ingestion in young and old adults suggest that a higher relative protein intake is required to maximally stimulate skeletal muscle MPS in the aged. Although, data on MPS responses to protein ingestion in the oldest old are currently lacking. Collectively, the data reviewed for this article support the concept that there is a close interaction of physical activity, diet, function and ageing. An attractive hypothesis is that regular physical activity may preserve and even enhance the responsiveness of ageing skeletal muscle to protein intake, until very advanced age. More research involving study participants particularly aged ≥85 years is warranted to better investigate and determine protein requirements in this specific growing population group.


Assuntos
Atividades Cotidianas , Envelhecimento/fisiologia , Proteínas na Dieta/administração & dosagem , Comportamento Alimentar , Músculo Esquelético/efeitos dos fármacos , Necessidades Nutricionais , Sarcopenia/prevenção & controle , Idoso de 80 Anos ou mais , Dieta , Proteínas na Dieta/farmacologia , Proteínas na Dieta/uso terapêutico , Exercício Físico , Feminino , Humanos , Masculino , Proteínas Musculares/biossíntese , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Estado Nutricional , Sarcopenia/metabolismo
8.
Nutrients ; 9(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165355

RESUMO

Aging is associated with a vasoconstrictive, pro-coagulant, and pro-inflammatory profile of arteries and a decline in the bioavailability of the endothelium-derived molecule nitric oxide. Dietary nitrate elicits vasodilatory, anti-coagulant and anti-inflammatory effects in younger individuals, but little is known about whether these benefits are evident in older adults. We investigated the effects of 140 mL of nitrate-rich (HI-NI; containing 12.9 mmol nitrate) versus nitrate-depleted beetroot juice (LO-NI; containing ≤0.04 mmol nitrate) on blood pressure, blood coagulation, vascular inflammation markers, plasma nitrate and nitrite before, and 3 h and 6 h after ingestion in healthy older adults (five males, seven females, mean age: 64 years, age range: 57-71 years) in a randomized, placebo-controlled, crossover study. Plasma nitrate and nitrite increased 3 and 6 h after HI-NI ingestion (p < 0.05). Systolic, diastolic and mean arterial blood pressure decreased 3 h relative to baseline after HI-NI ingestion only (p < 0.05). The number of blood monocyte-platelet aggregates decreased 3 h after HI-NI intake (p < 0.05), indicating reduced platelet activation. The number of blood CD11b-expressing granulocytes decreased 3 h following HI-NI beetroot juice intake (p < 0.05), suggesting a shift toward an anti-adhesive granulocyte phenotype. Numbers of blood CD14++CD16⁺ intermediate monocyte subtypes slightly increased 6 h after HI-NI beetroot juice ingestion (p < 0.05), but the clinical implications of this response are currently unclear. These findings provide new evidence for the acute effects of nitrate-rich beetroot juice on circulating immune cells and platelets. Further long-term research is warranted to determine if these effects reduce the risk of developing hypertension and vascular inflammation with aging.


Assuntos
Biomarcadores/sangue , Pressão Sanguínea , Doenças Cardiovasculares/sangue , Sucos de Frutas e Vegetais , Inflamação/sangue , Nitratos/administração & dosagem , Idoso , Envelhecimento , Beta vulgaris/química , Plaquetas/citologia , Plaquetas/metabolismo , Antígeno CD11b/metabolismo , Estudos Cross-Over , Dieta , Método Duplo-Cego , Feminino , Granulócitos/citologia , Hemostasia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Nitratos/sangue , Nitritos/administração & dosagem , Nitritos/sangue , Selectina-P/sangue , Raízes de Plantas/química , Protrombina/metabolismo , Tromboplastina/metabolismo , Circunferência da Cintura
9.
J Appl Physiol (1985) ; 122(4): 752-766, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104750

RESUMO

It remains incompletely understood whether there is an association between the transcriptome profiles of skeletal muscle and blood leukocytes in response to exercise or other physiological stressors. We have previously analyzed the changes in the muscle and blood neutrophil transcriptome in eight trained men before and 3, 48, and 96 h after 2 h cycling and running. Because we collected muscle and blood in the same individuals and under the same conditions, we were able to directly compare gene expression between the muscle and blood neutrophils. Applying weighted gene coexpression network analysis (WGCNA) as an advanced network-driven method to these original data sets enabled us to compare the muscle and neutrophil transcriptomes in a rigorous and systematic manner. Two gene networks were identified that were preserved between skeletal muscle and blood neutrophils, functionally related to mitochondria and posttranslational processes. Strong preservation measures (Zsummary > 10) for both muscle-neutrophil gene networks were evident within the postexercise recovery period. Muscle and neutrophil gene coexpression was strongly correlated in the mitochondria-related network (r = 0.97; P = 3.17E-2). We also identified multiple correlations between muscular gene subnetworks and exercise-induced changes in blood leukocyte counts, inflammation, and muscle damage markers. These data reveal previously unidentified gene coexpression between skeletal muscle and blood neutrophils following exercise, showing the value of WGCNA to understand exercise physiology. Furthermore, these findings provide preliminary evidence in support of the notion that blood neutrophil gene networks may potentially help us to track physiological and pathophysiological changes in the muscle.NEW & NOTEWORTHY By using weighted gene coexpression network analysis, an advanced bioinformatics method, we have identified previously unknown, functional gene networks that are preserved between skeletal muscle and blood neutrophils during recovery from exercise. These novel preliminary data suggest that muscular gene networks are coexpressed in blood leukocytes following physiological stress. This is a step forward toward the development of blood neutrophil gene subnetworks as part of blood biomarker panels to assess muscle health and disease.


Assuntos
Biomarcadores/sangue , Exercício Físico/fisiologia , Redes Reguladoras de Genes/fisiologia , Músculo Esquelético/fisiologia , Neutrófilos/fisiologia , Resistência Física/fisiologia , Adulto , Humanos , Inflamação/fisiopatologia , Contagem de Leucócitos/métodos , Masculino , Corrida/fisiologia , Estresse Fisiológico/fisiologia , Transcriptoma/fisiologia
10.
J Appl Physiol (1985) ; 122(3): 559-570, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035017

RESUMO

Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs, and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length, and muscle groups used during exercise. The effects of these factors on muscle strength, soreness, and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses, if tightly regulated, are integral to muscle repair and regeneration. Animal studies have revealed that various cell types, including neutrophils, macrophages, mast cells, eosinophils, CD8 and T-regulatory lymphocytes, fibro-adipogenic progenitors, and pericytes help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological, and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise.


Assuntos
Exercício Físico , Debilidade Muscular/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Miosite/imunologia , Condicionamento Físico Humano/efeitos adversos , Recuperação de Função Fisiológica/imunologia , Animais , Citocinas/imunologia , Humanos , Debilidade Muscular/etiologia , Miosite/etiologia
11.
J Appl Physiol (1985) ; 122(5): 1077-1087, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909225

RESUMO

The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8+ T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes.


Assuntos
Exercício Físico/fisiologia , Sistema Imunitário/imunologia , Atletas , Humanos , Contagem de Leucócitos/métodos , Linfócitos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia
12.
Sci Rep ; 6: 38084, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905522

RESUMO

Telomere length (TL) in blood cells is widely used in human studies as a molecular marker of ageing. Circulating cell-free DNA (cfDNA) as well as unconjugated bilirubin (UCB) are dynamic blood constituents whose involvement in age-associated diseases is largely unexplored. To our knowledge, there are no published studies integrating all three parameters, especially in individuals of advanced age. Here we present a secondary analysis from the Vienna Active Aging Study (VAAS), a randomized controlled intervention trial in institutionalized elderly individuals (n = 101). Using an exploratory approach we combine three blood-based molecular markers (TL, UCB and cfDNA) with a range of primary and secondary outcomes from the intervention. We further look at the changes occurring in these parameters after 6-month resistance exercise training with or without supplementation. A correlation between UCB and TL was evident at baseline (p < 0.05), and both were associated with increased chromosomal anomalies such as nucleoplasmatic bridges and nuclear buds (p < 0.05). Of the three main markers explored in this paper, only cfDNA decreased significantly (p < 0.05) after 6-month training and dietary intervention. No clear relationship could be established between cfDNA and either UCB or TL. The trial was registered at ClinicalTrials.gov (NCT01775111).


Assuntos
Envelhecimento/genética , Bilirrubina/sangue , Ácidos Nucleicos Livres/sangue , Telômero/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Envelhecimento/metabolismo , Biomarcadores/sangue , Feminino , Humanos , Institucionalização , Masculino , Treinamento de Força , Homeostase do Telômero
13.
Mutat Res Rev Mutat Res ; 766: 48-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26596548

RESUMO

Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to "averagely" aged humans. These inverse observations in nonagenarians (90-99 years), centenarians (100-109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in "super old" humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in "successful agers". There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching "super old" age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere shortening.


Assuntos
Envelhecimento/genética , Dano ao DNA/genética , Instabilidade Genômica , Telômero/genética , Idoso de 80 Anos ou mais , Humanos
14.
Biochem Biophys Res Commun ; 449(1): 94-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24814708

RESUMO

Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-α and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.


Assuntos
Biliverdina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Endotoxinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Receptor da Anafilatoxina C5a/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
J Appl Physiol (1985) ; 116(3): 274-87, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24311745

RESUMO

Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Recuperação de Função Fisiológica/fisiologia , Transcriptoma/fisiologia , Adulto , Teste de Esforço/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Análise Serial de Proteínas/métodos , Fatores de Tempo , Adulto Jovem
16.
J Appl Physiol (1985) ; 114(12): 1677-88, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23580600

RESUMO

Neutrophils serve as an intriguing model for the study of innate immune cellular activity induced by physiological stress. We measured changes in the transcriptome of circulating neutrophils following an experimental exercise trial (EXTRI) consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Blood samples were taken at baseline, 3 h, 48 h, and 96 h post-EXTRI from eight healthy, endurance-trained, male subjects. RNA was extracted from isolated neutrophils. Differential gene expression was evaluated using Illumina microarrays and validated with quantitative PCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Blood concentrations of muscle damage indexes, neutrophils, interleukin (IL)-6 and IL-10 were increased (P < 0.05) 3 h post-EXTRI. Upregulated groups of functionally related genes 3 h post-EXTRI included gene sets associated with the recognition of tissue damage, the IL-1 receptor, and Toll-like receptor (TLR) pathways (familywise error rate, P value < 0.05). The core enrichment for these pathways included TLRs, low-affinity immunoglobulin receptors, S100 calcium binding protein A12, and negative regulators of innate immunity, e.g., IL-1 receptor antagonist, and IL-1 receptor associated kinase-3. Plasma myoglobin changes correlated with neutrophil TLR4 gene expression (r = 0.74; P < 0.05). Neutrophils had returned to their nonactivated state 48 h post-EXTRI, indicating that their initial proinflammatory response was transient and rapidly counterregulated. This study provides novel insight into the signaling mechanisms underlying the neutrophil responses to endurance exercise, suggesting that their transcriptional activity was particularly induced by damage-associated molecule patterns, hypothetically originating from the leakage of muscle components into the circulation.


Assuntos
Exercício Físico/fisiologia , Neutrófilos/imunologia , Resistência Física/imunologia , Transdução de Sinais/imunologia , Estresse Fisiológico/imunologia , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Hidrocortisona/sangue , Hidrocortisona/genética , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Neutrófilos/metabolismo , Resistência Física/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica , Transcriptoma
17.
Ann N Y Acad Sci ; 1229: 115-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21793846

RESUMO

Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.


Assuntos
Dano ao DNA , Resistência Física/fisiologia , Reparo do DNA/fisiologia , Exercício Físico/fisiologia , Humanos , Estresse Oxidativo
18.
Mol Nutr Food Res ; 54(12): 1722-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20589860

RESUMO

SCOPE: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. METHODS AND RESULTS: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. CONCLUSION: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.


Assuntos
Ácido Clorogênico/análise , Café/química , Dano ao DNA , Substâncias Macromoleculares/toxicidade , Estresse Oxidativo , Adulto , Antioxidantes/metabolismo , Ensaio Cometa , Dinoprosta/análogos & derivados , Dinoprosta/urina , Feminino , Humanos , Peroxidação de Lipídeos , Linfócitos/metabolismo , Masculino , Malondialdeído/análise , Pessoa de Meia-Idade , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Tirosina/análogos & derivados , Tirosina/análise , Adulto Jovem
19.
Br J Nutr ; 104(8): 1129-38, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20637132

RESUMO

Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA , Suplementos Nutricionais , Exercício Físico/fisiologia , Resistência Física/fisiologia , Adaptação Fisiológica , Adulto , Ácido Ascórbico/sangue , Ácido Ascórbico/metabolismo , Ciclismo , Humanos , Peroxidação de Lipídeos , Linfócitos/metabolismo , Masculino , Corrida , Natação , Fatores de Tempo , alfa-Tocoferol/sangue , alfa-Tocoferol/metabolismo , beta Caroteno/sangue , beta Caroteno/metabolismo
20.
Toxicology ; 278(2): 211-6, 2010 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19766696

RESUMO

Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.


Assuntos
Ácido Ascórbico/sangue , Dano ao DNA , Estresse Oxidativo , Resistência Física , alfa-Tocoferol/sangue , Adulto , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Atletas , Ciclismo , Ensaio Cometa , Humanos , Masculino , Corrida , Troca de Cromátide Irmã , Natação , Fatores de Tempo , alfa-Tocoferol/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...